Mathematical Notations

Kunal Singh

May 23, 2022

Set Theory

1 Set is denoted by $\{\}$. Set with 2 and 3 is denoted by $\{2, 3\}$. Let A be a set of n elements. Then $A = \{1, 2, \dots, n\}$. Then assert a is present in A is denoted by $a \in A$. And assert b is not present in A is denoted by $b \notin A$. Some Predefined Sets: 1.1 Natural numbers is denoted by \mathbb{N} . $\mathbb{N} = \{1, 2, 3, \dots\}.$ 1.2 Integers is denoted by \mathbb{Z} . $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$ 1.3 Rational number is denoted by \mathbb{Q} . $\mathbb{Q} = \Big\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \Big\}.$ For example: $\frac{1}{3} \in \mathbb{Q}, \ \frac{-1}{34} \in \mathbb{Q}, \ \sqrt{2} \notin \mathbb{Q}, \ \pi \notin \mathbb{Q}.$ 1.4 Real number is denoted by \mathbb{R} . $\mathbb{R} = \{ x | -\infty < x < \infty \}.$ eg. $-67.343 \in \mathbb{R}$. 1.5 Compex number is denoted by \mathbb{C} . i.e $\mathbb{C} = \{z \mid z = a + bi, -\infty < a < \infty, -\infty < b < \infty\};$ If set A is a subset of B, then we write $A \subseteq B$. this means $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$. If set A is a proper subset of B, then we write $A \subset B$. Such that \mid Symbol. $A = \{ x \mid x \subseteq \mathbb{R}, x < 0 \}.$ Intersection \cap : object that belong to set A and set B. Union \cup : object that belong to set A or set B. If set A is **not** a subset of B, then we write $A \not\subset B$. Power Set : All subsets of A. Represented by 2^A or P(A) or $\mathbb{P}(A)$. Equality =Symbol. A = B if and only if $A \subseteq B$ and $B \subseteq A$. when both set have same elements, then they are equal. Complement A^c or A': Set of all elements that are not in set A. Relative complement $A \setminus B$ or A - B: object that belong to A but not to B. Symmetric difference $A \Delta B$ or $A \Theta B$: object that belong to A or B but not to their intersection. Ordered pair(a, b): collection of two elements. Cartesian product $A \times B$: set of all ordered pairs from A and B. $A \times B = \{(a, b) \mid a \in A, b \in B\}.$ Cardinality |A| or #A: number of elements in set A. \aleph_0 : infinite cardinality of natural numbers set. \aleph_1 : cardinality of countabel ordinal numbers set. \emptyset : empty set. $\emptyset = \{\}$. \mathbbm{U} : Universal set. Set of all possible set.