Mathematical Notations

Kunal Singh

May 23, 2022

Set Theory

1 Set is denoted by $\}$. Set with 2 and 3 is denoted by $\{2,3\}$.
Let A be a set of n elements. Then $A=\{1,2, \ldots, n\}$.
Then assert a is present in A is denoted by $a \in A$. And assert b is not present in A is denoted by $b \notin A$.

Some Predefined Sets:

1.1 Natural numbers is denoted by \mathbb{N}.
$\mathbb{N}=\{1,2,3, \ldots\}$.
1.2 Integers is denoted by \mathbb{Z}.
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.
1.3 Rational number is denoted by \mathbb{Q}.
$\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}$.
For example:
$\frac{1}{3} \in \mathbb{Q}, \frac{-1}{34} \in \mathbb{Q}, \sqrt{2} \notin \mathbb{Q}, \pi \notin \mathbb{Q}$.
1.4 Real number is denoted by \mathbb{R}.
$\mathbb{R}=\{x \mid-\infty<x<\infty\}$.
eg. $-67.343 \in \mathbb{R}$.
1.5 Compex number is denoted by \mathbb{C}.
i.e $\mathbb{C}=\{z \mid z=a+b i,-\infty<a<\infty,-\infty<b<\infty\}$;

If set A is a subset of B, then we write $A \subseteq B$.
this means $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$.
If set A is a proper subset of B, then we write $A \subset B$.
Suchthat | Symbol.
$A=\{x \mid x \subseteq \mathbb{R}, x<0\}$.
Intersection \cap : object that belong to set A and set B.
Union \cup : object that belong to set A or set B.
If set A is not a subset of B, then we write $A \not \subset B$.
Power Set: All subsets of A.
Represented by 2^{A} or $P(A)$ or $\mathbb{P}(A)$.
Equality $=$ Symbol.
$A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.
when both set have same elements, then they are equal.
Complement A^{c} or A^{\prime} : Set of all elements that are not in set A.
Relative complement $A \backslash B$ or $A-B$: object that belong to A but not to B.
Symmetric difference $A \Delta B$ or $A \Theta B$: object that belong to A or B but not to their intersection.
Orderedpair (a, b) : collection of two elements.
Cartesian product $A \times B$: set of all ordered pairs from A and B.
$A \times B=\{(a, b) \mid a \in A, b \in B\}$.
Cardinality $|A|$ or $\# A$: number of elements in set A.
\aleph_{0} : infinite cardinality of natural numbers set.
\aleph_{1} : cardinality of countabel ordinal numbers set.
$\emptyset:$ empty set. $\emptyset=\{ \}$.
\mathbb{U} : Universal set. Set of all possible set.

